Ex-proof proportional valves with integral digital drivers with or without integral position or pressure transducer - ATEX or IECEx certification # 1 EXPLOSION PROOF CERTIFICATION MAIN DATA | ATEX certification | EX Certification Ex II 2G Ex d IIC T6/T5/T4/T3 | | | | | | | | |---------------------------------------|--|--|--|-----------------------|--|--|--|--| | IECEx certification | | Ex d IIC T6/T5 | /T4/T3 Gb IP66 | | | | | | | VALVE TYPE | | ENOID VALVES ut transducer) | SINGLE SOLENOID VALVES
(with or without transducer) | | | | | | | Temperature class (only for Group II) | Т4 | T3 (option /7) | Т6 | T5 (option /7) | | | | | | Surface temperature | ≤ 135 °C | ≤ 200 °C | ≤85 °C | ≤100 °C | | | | | | Ambient temperature | -20 ÷ +40 °C | -20 ÷ +60 °C | -20 ÷ +45 °C | -20 ÷ +60 °C | | | | | | Protection degree | IP66 According to | IEC 144 when correct see sec | | levant cable gland | | | | | | Mechanical construction | Flame proof housing | Flame proof housing classified Ex d, according to EN 60079-0: 2006, EN 60079-1: 2007 | | | | | | | | Cable entrance and | | Internal terminal board | | - | | | | | | electrical wiring | I M | 120x1.5 threaded conne | ection for cable entran | ice | | | | | Note: This technical table contains information about ex-proof certification data, model codes, dimensions and wiring of the ex-proof proportional valves with integral digital electronics For detailed information about: -valve's functional characteristics and mounting surface dimensions -digital drivers technical data and functional parameters setting see the relevant technical tables of the standard proportional valves and digital drivers. Ex-proof ZA valves are proportional valves equipped with specific solenoids and integral digital electronic drivers available with following certifications and protection mode: - ATEX 94/9/CE - Ex II 2 G Ex d IIC T6/T5/T4/T3 (group II for surface plants with gas or vapours environment, category 2, zone 1 and 2) - IECEx worldwide recognized safety certification, Ex d IIC T6/T5/T4/T3 Gb IP66 The solenoid and the electronics housing are designed to contain the possible explosion which could be caused by the explosion which could be caused by the presence of the gas mixture inside the housing, thus avoiding dangerous propagation in the external environment. They are also designed to limit the external temperature according to the certified class to avoid the self ignition of the explosive mixture present in the environ- The integral digital drivers in explosion proof construction provides consistent advantages respect to the separated ana-log drivers for ex-proof valves: - compact execution - simplified valve wiringreduced risk of electromagnetic disturbances on the valve's transducer feedback signal • possibility to exploit in hazardous envi- - ronment all the advantages provided by the standard digital electronics: softwa-re setting of the main functional parameters as bias, ramps, scale, linearization of the hydraulic regulation characteristic - complete diagnostics of the driver status, and fault condition. Following communication interfaces are - PS, Serial communication interface for configuration, monitoring and firmware updating through Atos PC software. BC, CANopen interface - BP, PROFIBUS DP interface The valves with BC and BP interfaces can be integrated into a fieldbus communication network and thus digitally operated by the machine control unit. The ex-proof digital integral electronics is available for the full range of proportional valves, as shown in the following pages. ### 2 MAIN CHARACTERISTICS OF EX-PROOF PROPORTIONAL VALVES | Assembly position | Any position | | | |---|---|--|--| | Subplate surface finishing Roughness index, Ra 0,4 flatness ratio 0,01/100 (ISO 1101) | | | | | Ambient temperature | See section 1 | | | | Fluid | Hydraulic oil as per DIN 51524 535 for other fluids see model code sections | | | | Recommended viscosity | 15 ÷100 mm²/s at 40°C (ISO VG 15÷100) | | | | Fluid contamination class | ISO 4406 class 20/18/15 NAS 1638 class 9, in line filters of 10 μm (β10≥75 recommended) | | | | Fluid temperature | -20°C +60°C (standard seals) -20°C +80°C (/PE seals) | | | # 3 CERTIFICATION In the following are resumed the valves marking according to Atex 94/9/CE and IECEx #### 3.1 GROUP II, ATEX $\langle \widehat{\mathbf{x}} \rangle$ = ATEX identification for explosive atmospheres II = Group II for surfaces plants = High protection (equipment category) G = For gas and vapours = Flame proof housing IIC = Gas group T6/T5/T4/T3 = Temperature class of solenoid surface referred to the max ambient temperature = Possibility of explosive atmosphere during normal functioning Zone 1 Zone 2 = Low probability of explosive atmosphere ### 3.2 GROUP II, IECEx Ex = Equipment for explosive atmospheres = Flame proof housing = Gas group T6/T5/T4/T3 = Temperature class of solenoid surface = Equipment protection level, high level protection for explosive Gas atmospheres **IP66**= Protection degree WARNING: service work provided on the valve by the end users or not qualified personnel invalidates the certification (1) Serial interface always present for AES-BC and AES-BP (2) Only for DKZA-TES-172-S5 the spool overlapping type 2 provides the same characteristic of type 1, but in central position the internal leakages from P to A and B are drained to tank, avoiding the drift of cylinders with differential areas. Note: For mounting surface dimensions see table P005 For the digital drivers technical data and functional parameters setting, see: table G115 (AES); G210 (TES) # 5 HYDRAULIC CHARACTERISTICS of DHZA and DKZA (based on mineral oil ISO VG 46 at 50 °C) (1) Spool type S2 only for AES version; spool type 0L5, 0D5, 0L3 only for TES version ⁽²⁾ Response times at step signal (0%-100%) are measured from 10% to 90% of step value and are strictly referred to the valve regulation. (1) Serial interface always present for AES-BC and AES-BP. (2) Pressure reducing valve with fixed setting (40 bar for DPZA-1 and -2; 100 bar for DPZA-4) installed between pilot valve and main body. It is advisable for valves with internal pilot in case of system pressure higher than 200 bar. Note: For mounting surface dimensions see table P005 For the digital drivers technical data and functional parameters setting, see table G115 # 7 HYDRAULIC CHARACTERISTICS OF DPZA-AES (based on mineral oil ISO VG 46 at 50 °C) (1) Response times at step signal (0% → 100%) are measured from 10% to 90% of step value and are strictly referred to the valve regulation. # 8 MODEL CODE OF EX-PROOF PROPORTIONAL DIRECTIONAL VALVES PILOT OPERATED (1) Pressure reducing valve with fixed setting (40 bar for DPZA-1 and -2; 100 bar for DPZA-4) installed between pilot valve and main body. It is advisable for valves with internal pilot in case of system pressure higher than 200 bar. This option is standard for DPZA-LES-1 Note: For mounting surface dimensions see: table P005 For the digital drivers technical data and functional parameters setting, see table **G210** # 9 HYDRAULIC CHARACTERISTICS OF DPZA-LES (based on mineral oil ISO VG 46 at 50 °C) | Valve model | DPZA-4 | | | | DPZA-4M | | | | | |--|---------------|-----------------------------|---------------|------------------|-------------------|---------------|-------|---------|--| | Spool overlapping | 0, 1, 3 | 1 | , 3 | 0, 1, 3 | 0, 1, 3 | 1, 3 | | 0, 1, 3 | | | Spool type and size | L5 (1) | S5 | D5 | DL5 | L5 | S5 | D5 | DL5 | | | Max flow: [I/min] at $\Delta p = 10$ bar at $\Delta p = 30$ bar max permissible flow | | 360
620
770 | | | 380
660
800 | | | | | | Pressure limits [bar] | | | ports P, A, B | , X = 350; T = | 250 (5 for optic | on /D); Y = 5 | | | | | Response spool overlapping 0 | | [| DPZA-1, DPZA | -2 <25ms; DPZ | ZA-4 <30ms; D |)PZA-4M <35m | 1S | | | | time [ms] (2) spool overlapping 1-3 | | DPZ/ | A-1 <50ms; D | PZA-1 <60ms; | DPZA-4 <80ms | s; DPZA-4M < | :85ms | | | | Hysteresis [%] | | | | ≤0,1% [% of n | nax regulation] | | | | | | Repeatability | | ±0,1% [% of max regulation] | | | | | | | | | Thermal drift | | | zero | point displaceme | ent < 1% at ΔT | = 40°C | | | | ⁽¹⁾ For zero overlapping spool **0L5**, the valve offset position (with switch-off power supply) is 1 ÷ 6% P-B/A-T ⁽²⁾ Response times at step signal (0%→100%) are measured from 10% to 90% of step value and are strictly referred to the valve regulation. Note: For mounting surface dimensions see table P005 For the digital drivers technical data and functional parameters setting, see table G210 (TES) # 11 HYDRAULIC CHARACTERISTICS (based on mineral oil ISO VG 46 at 50 °C) - (1) Referred to spool in neutral position and 50°C oil temperature. - (2) Referred to spool in fail safe position and 50°C oil temperature. - (3) Referred to spool in fail safe position at $\Delta p = 35$ bar per edge and 50°C oil temperature. PS = Serial BC = CANopen **BP** = PROFIBUS DP Valve size: see section 13 for size code (1) Serial interface always present for AES-BC and AES-BP (2) Integral or remote pressure transducer with current feedback 4 ÷ 20 mA Note: For mounting surface dimensions see table P005 For the digital drivers technical data and functional parameters setting, see: table G115 (AES); table G205 (TERS) # 13 HYDRAULIC CHARACTERISTICS #### MODEL CODE OF CARTRIDGES (for LIMZA and LICZA) 14 Type of cartridge 31 = for LIMZA and LICZA 36 = for LICZA Note: For mounting surface dimensions see table P006 Spring cracking pressure: **2**=1,5 bar for poppet 31 3 = 3 bar**4**=4 bar 6=6 bar for poppet 31 and 36 Cable entrance threaded connection: $\mathbf{M} = M20x1,5 (6H/6g)$ Max regulated pressure: see section 13 | TYPICAL FUNCTIONS OF CARTRIDGES | | | | | | | | | |---------------------------------|--------------------------------------|-----------------|-------------------|--|--|--|--|--| | Type | Functional sketch (hydraulic symbol) | Typical section | Area ratio
(1) | | | | | | | 31 | B B | | 1:1 | | | | | | | 36 | B | | 1:1 | | | | | | (1) It is the ratio of the area A to the area on which the pilot pressure is applied. (1) Serial interface always present for AES-BC and AES-BP. (2) Integral or remote pressure transducer with current feedback 4 ÷ 20 mA. Note: For mounting surface dimensions see table P005 For the digital drivers technical data and functional parameters setting, see: table G115 (AES); table G205 (TERS) # 16 HYDRAULIC CHARACTERISTICS ### 17 MODEL CODE OF CARTRIDGES (for LIRZA) | 2 | ** | * | | | | | | | |--------|---------------------------|----------------------------------|--|--|--|--|--|--| | | | Seals material: - = NBR PE = FKM | | | | | | | | | Series number | | | | | | | | | Spring | Spring cracking pressure: | | | | | | | | Spring cracking pressure: 4 = 4 bar 7 = 7 bar # TYPICAL FUNCTIONS OF CARTRIDGES | Туре | Functional sketch (hydraulic symbol) | Typical section | Area ratio
(1) | |------|--------------------------------------|-----------------|-------------------| | 37 | B | | 1:1 | (1) It is the ratio of the area A to the area on which the pilot pressure is applied. (1) Serial interface always present for AES-BC and AES-BP Note: For the digital drivers technical data and functional parameters setting, see table G115 (AES); table G210 (TES) For mounting surface dimensions see table P005 # 19 HYDRAULIC CHARACTERISTICS (based on mineral oil ISO VG 46 at 50 °C) | Note: In three-way connection port P is open. In two-way connection port P must be plugged. Port T must always be plugged. | | | | B | P | QVHZA
QVKZA | | | | | B
H
A | | QVHZA-1
QVKZA-1 | | | |--|-----------|---------------|----------|--------|----|----------------|-------|----|---------|----|-------------|---------|--------------------|---------|-------| | Valve model | | | Q | VHZA-A | ES | | | Q | VHZA-TI | ES | | QVKZ | A-AES | QVKZ | A-TES | | Valve size | | | | | | 0 | 6 | | | | | | 1 | 0 | | | Max pressure ports P, A, B | [bar] | | | | | | | 2 | 10 | | | | | | | | Max regulated flow | [l/min] | 3,5 | 12 | 18 | 36 | 45 | 3,5 | 12 | 18 | 35 | 45 | 65 | 90 | 65 | 90 | | Min regulated flow (1) | [cm³/min] | 15 | 20 | 30 | 50 | 60 | 15 | 20 | 30 | 50 | 60 | 85 | 100 | 85 | 100 | | Regulating Δp | [bar] | 4 - 6 10 - 12 | | - 12 | 15 | 4 | - 6 | 10 | - 12 | 15 | 6 - 8 | 10 - 12 | 6 - 8 | 10 - 12 | | | Max flow on port A | [l/min] | 4 | 40 35 50 | | | 55 | 50 60 | | | 60 | 70 | 100 | 70 | 100 | | (1) Values are referred to 3-way configuration. In the 2-way configuration, the values of min regulated flow are higher. #### 19.1 TYPICAL APPLICATIONS #### 20 ELECTRONICS WIRING #### 20.1 MAIN CONNECTIONS FOR ALL MODELS | PIN | CABLE
ENTRANCE | DESCRIPTION | TECHNICAL SPECIFICATION | | | |-----|-------------------|-------------|--|--|--| | 1 | 3 | ENABLE | Enabling input, normal working = 24 VDC | | | | 2 | 3 | VL0 | Power supply (logic stage)
Stabilized +24 Vpc | | | | 3 | 3 | VL+ | Filtered and rectified: Vrms 21-33 (ripple max 2Vpp) | | | | 4 | 3 | FAULT | Alarm = 0 Vpc Correct functioning = +24Vpc | | | | 5 | 3 | COIL S2 | Coil connection only for double solenoid valves | | | | 6 | 3 | COIL S2 | Con connection only for double sciencia valves | | | | 7 | 3 | INPUT- | Negative reference signal for INPUT+ (2) | | | | 8 | 3 | MONITOR | Monitor output signal for AES : (1) (2)
±5 VDC maximum range | | | | 0 | 3 | MONITOR | Monitor output signal for TERS , TES , LES : (1) (2) ±10 VDC maximum range (4 ÷ 20 mA only for /I option) | | | | 9 | 3 | INPUT+ | Reference input signal: (2)
±10 VDC maximum range (4 ÷ 20 mA only for /I option) | | | | 10 | 3 | V0 | Power supply (logic stage)
Stabilized +24 Vpc | | | | 11 | 3 | V+ | Filtered and rectified: Vrms 21-33 (ripple max 2Vpp) | | | | PE | 3 | EARTH | Earth connection | | | (1) referred to pin 2 (VL0) (2) differential mode input # 20.2 TRANSDUCER CONNECTIONS FOR TERS, LES (factory wired), AES/W (to be wired) | PIN | CABLE
ENTRANCE | VERSION | DESCRIPTION | TECHNICAL SPECIFICATION | |-----|-------------------|---------|-------------|---| | | | AES/W | Monitor 2 | 2 nd Monitor ± 5 V _{DC} | | 12 | 4 | TERS | NC | Not connected | | | | LES | AGND | Power supply and signal = 0 VDC | | | AES/W AGND | | AGND | Power supply and signal = 0 VDC | | 13 | 4 | TERS | VT+ | Transduder supply +24 VDC | | | | LES | VT+ | Transduder supply +15 VDC | | | | AES/W | TR | Pressure transducer signal | | 14 | 4 | TERS | NC | Not connected | | | | LES | VT- | Transduder supply -15 Vpc | | | | AES/W | VT+ | Transduder supply +24 VDC | | 15 | 4 | TERS | TR | Pressure transducer signal | | | | LES | TR | Position transducer signal | Note: For AES and TES versions the pins 12-13-14-15 are not connected # 20.3 PS COMMUNICATION INTERFACE (M8 connector) | PIN | CABLE
ENTRANCE | SIGNAL | WIRE
COLOUR | CONNECTOR INTERFACE 4 | |-----|-------------------|--------|----------------|-----------------------| | 1 | | RS_RX | brown | | | 3 | 1 | RS_TX | blue | 1-(00)-3 | | 4 | | RS_GND | black | Front view | Note: For AES-BC and AES-BP versions, the Serial communication interface is always available for eventual valve's parameter setting through the E-SW programming software; M8 connector available inside the electronic box, see Fig.1 #### 20.4 BC and BP COMMUNICATION INTERFACE CONNECTIONS | PIN | CABLE | DESCRIPTION | | | | | | |-----|----------|-------------------|---------|--|--|--|--| | | ENTRANCE | ВС | BP | | | | | | 16 | 1/2 | NC do not connect | +5V BUS | | | | | | 17 | 1/2 | SHIELD | SHIELD | | | | | | 18 | 1/2 | CAN_H | B_LINE | | | | | | 19 | 1/2 | CAN_L | A_LINE | | | | | | 20 | 1/2 | BUS GND | BUS GND | | | | | ### 20.5 CABLE ENTRANCE (see Fig.1) ① Cable entrance for PS, BC, BP communication interfaces: The Ex-proof integral digital electronics is provided with serial (PS) or CANopen (BC) or PROFIBUS DP (BP) communication interface, depending to the selected model code For PS version the communication connector is used for the software setting of the functional parameters. It is installed in the cable entrance pos. ① (factory plugged). For the electronics parameter setting, remove the threaded metal plug and connect the PC communication cable to the connector -see Fig.2 # /!\ warning: The above operation must be performed in a safety area. After having completed the parameter setting, disconnect the communication cable and close the cable entrance with the proper threaded plug. For BC and BP versions the valve is directly driven through the fieldbus interface, which connections are available on the terminal board internal to the electronics housing. board internal to the electronics housing. Depending to the type of connection to the fieldbus network, one or two cable entrances can be used (see section 22 TAB.I) - -"Via stub" connection, cable entrance (1) to be used - -"Daisy chain" connection, cable entrance ① and ② to be used - ② Additional cable entrance for BC and BP communication interfaces - 3 Cable entrances for power supply and main connections - Cable entrances for remote pressure transducer connections (for AES/W) The cable entrance 4 is factory wired for: TERS (pressure transducer) LES (position transducer) AES and TES double solenoid version #### 20.6 INTERNAL FIELDBUS TERMINATORS SETTING (BC and BP versions) | С | ANopen | - BC version | PROFIBUS DP - BP version | | | | |----------------------------|--------|--|--------------------------|-------------------|--|--| | Switch Termination enabled | | | Switch | Terminator Enable | | | | 4 | ON | ON 4 | 4 | OFF | | | | 3 | OFF | ON = = = = = = = = = = = = = = = = = = = | 3 | ON | | | | 2 | OFF | | 2 | ON | | | | 1 | OFF | _ 41 h | 1 | ON | | | Note: Drivers with fieldbus interface are delivered by default 'Not Terminated'. All switches are set OFF. Fig. 2 PC connection to the valve's serial communication interface (only for PS version) # 21 SOFTWARE TOOLS The driver configuration and parameters can be easily set with the Atos E-SW programming software. The programming software is available in different versions according to the driver's communication interfacing: E-SW-BASIC (PS Serial) and E-SW-FIELDBUS (BC CANopen and BP PROFIBUS DP). A proper connection is required between the PC and the electronic driver communication port (PS. BC or BP). For a more detailed decription of software interface, PC requirements and adapter/cable/terminator characteristics please refer to technical table **GS500**. #### DVD programming software, must be ordered separately: **E-SW-*** (first supply - mandatory) = include software installer, user manuals and fieldbus configuration files (EDS for BC, GSD for BP) **E-SW-*-N** (next supplies - optional) = only for supplies after the first; service not included, web registration not allowed ### USB Adapters, Cables and Terminators, can be ordered separately: E-A-PS-USB/DB9 and E-C-PS-DB9/M8 = USB adapter and cable for PS drivers E-A-PS-USB/DB9 adapter is required only if a RS232 serial port is not available on the PC E-A-BC-USB/DB9, E-C-BC-DB9/RA and E-TRM-BC-DB9/DB9 = USB adapter, cable and terminator for BC drivers = USB adapter, cable and terminator for BC drivers = USB adapter, cable and terminator for BP drivers E-TRM-BC-DB9/DB9 (CANopen) and E-TRM-BP-DB9/DB9 (PROFIBUS DP) fieldbus terminators are required when the adapter is directly connected to the digital driver or to one end of the fieldbus network. #### 22 MODEL CODE OF CABLE GLANDS AND THREADED PLUGS (for non-armoured cables) Atos can supply different kind of cable glands, depending to the valve's certification, and to the cable's diameter used by the costumer. The cable glands and the threaded plugs (to be ordered separately) are available ATEX certified according to EN 60079-0 and EN 60079-1, or multicertified ATEX, IECEx, EAC Depending to the model code, the valves are supplied with: - Atex certified cable gland code ZMX-S for factory wired connections - Atex and IECEx certified threaded plugs code ZMX-T (for connections not to be used) - Multicertified cable gland code PAMC/M for factory wired connections Following codes have to be specified for spare cable glands (IP66), or plug- **ZMX-T** = brass threaded plug,threated connection M20x1,5 (6H/6g). **ZMX-S** = brass cable gland, threaded connection M20x1,5 (6H/6g). Cable size $3.2 \div 8.7$ mm **ZMX-L** = brass cable gland, threaded connection M20x1,5 (6H/6g). Cable size $6.5 \div 14$ mm **PAMC/M** = with threated connection M20x1,5 UNI-4535 (6H/6g). Cable size PG-9 (IP66/67) The cable gland PA*/M must be blocked with loctite or similar or with a locking nut. For connections available for the costumers, the cable glands and the treaded metal plug have to be ordered separately. The quantity and the mounting position of the cable glands and threaded plugs is depending to the selected connection of the of communication interface, as shown in the following **TAB. I** #### TAB. I | Valve's
communication
interfaces | Cable | be ordere
gland
position | d separately Threaded plug quantity position | | Scheme | Notes | | | | |--|-------|--------------------------------|--|------|---|---|--|--|--| | PS | 1 | 3 | none | none | 0 0 0 3 0 4 | Cable entrance 1 and 2 are factory plugged Cable entrance 3 is open for costumers Cable entrance 4 is factory plugged or wired depending to the valve model | | | | | BC, BP
"via stub"
connection | 2 | 1, 3 | 1 | 2 | 00
00
03
04 | Cable entrance 1, 2 and 3 are open for costumers Cable entrance 4 is factory plugged or wired depending to the valve model | | | | | BC, BP
"daisy chain"
connection | 3 | 1, 2, 3 | none | none | □ 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Cable entrance 1, 2 and 3 are open for costumers Cable entrance 4 is factory plugged or wired depending to the valve model | | | | # 23 MASS | VALVE TYPE | MASS
(Kg) | |------------|--------------|------------|--------------|------------|--------------|------------|--------------|-------------|--------------|------------|--------------| | DHZA-*-05 | 8,2 | DPZA-*-27 | 18,7 | AGMZA-*-10 | 12,2 | LIMZA-*-5 | 19,2 | RZGA-*-010 | 9 | QVHZA | 8,6 | | DHZA-*-07 | 9 | DPZA-*-45 | 22 | AGMZA-*-20 | 16 | LIMZA-*-6 | 28 | RZGA-*-033 | 9,6 | QVKZA | 9,5 | | DKZA-*-05 | 9 | DPZA-*-47 | 23 | AGMZA-*-32 | 18,5 | LICZA-*-1 | 13,6 | AGRCZA-*-10 | 13,6 | | | | DKZA-*-07 | 9,6 | DLHZA | 8,5 | LIMZA-*-1 | 10,3 | LICZA-*-2 | 14,6 | AGRCZA-*-20 | 14,6 | | | | DPZA-*-15 | 13,6 | DLKZA | 10,2 | LIMZA-*-2 | 10,8 | LICZA-*-3 | 17,7 | LIRZA-*-1 | 17,7 | | | | DPZA-*-17 | 14,6 | RZMA-*-010 | 9 | LIMZA-*-3 | 12 | LICZA-*-4 | 8,2 | LIRZA-*-2 | 8,2 | | | | DPZA-*-25 | 17,7 | RZMA-*-030 | 9,3 | LIMZA-*-4 | 15,7 | LICZA-*-5 | 9 | LIRZA-*-3 | 9 | | | # 24 DIMENSIONS OF EXPLOSION PROOF SOLENOIDS WITH INTEGRAL DIGITAL ELECTRONICS [mm] # 25 DIMENSIONS OF EXPLOSION PROOF VALVES WITH INTEGRAL DIGITAL ELECTRONICS [mm]